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Some dynamical properties of sandwich beams and plates are discussed. The types of
elements investigated are three-layered structures with lightweight honeycomb or foam
cores with thin laminates bonded to each side of the core. A six order di!erential equation
governing the apparent bending of sandwich beams is derived using Hamilton's principle.
Bending, shear and rotation are considered. Boundary conditions for free, clamped and
simply supported beams are formulated. The apparent bending sti!ness of sandwich beams
is found to depend on the frequency and the boundary conditions for the structure. Simple
measurements on sandwich beams are used to determine the bending sti!ness of the entire
structure and at the same time the bending sti!ness of the laminates as well as the shear
sti!ness of the core. A method for the prediction of eigenfrequencies and modes of vibration
are presented. Eigenfrequencies for rectangular and orthotropic sandwich plates are
calculated using the Rayleigh}Ritz technique assuming frequency dependent material
parameters. Predicted and measured results are compared.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The number of applications for sandwich structures is steadily increasing. This trend is
dictated by demands for higher load capacity for civil and military aircraft, reduced fuel
consumption for passenger cars, increased speed for passenger and navy vessels of
catamaran types and increased acceleration and retardation for trains to increase the
average velocity. The term sandwich panel here refers to a structure consisting of two thin
faces bonded to a thick and lightweight core. The faces are typically of aluminium or some
composite laminate. The core could be lightweight foam or a honeycomb structure. There
are a large number of papers and publications on the dynamic properties of sandwich
structures. Already in 1950, Ho! [1] concluded that there was an abundance of theoretical
work in the "eld. Some of the basic theories are now also summarized in textbooks. Two
examples are references [2, 3].

The bending of sandwich beams and plates is often described by means of some simpli"ed
model. Often a variational technique is used to derive the basic equations governing the
vibrations of sandwich structures. The Timoshenko [4] and Mindlin [5] models are
frequently referred to. Various types of "nite element models are alternative methods. One
of the "rst fundamental works on the bending and buckling of sandwich plates was
published by Ho! [1]. In this paper, Hamilton's principle is used to derive the di!erential
0022-460X/02/130409#22 $35.00/0 � 2002 Elsevier Science Ltd.
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equations governing the bending and buckling of rectangular sandwich panels subjected to
transverse loads and edgewise compression. The basic ideas introduced by Ho! form the
basis for many subsequent papers on the bending of sandwich plates.

Another by now classic paper was published by Kurtze and Watters [6] in 1959. The aim
of the paper was to develop a simple model to predict the sound transmission through
sandwich panels. The starting point was a model describing the bending of the panel based
on the mechanical impedance of each layer. The laminates are described as thin plates. The
thick core is isotropic and only shear e!ects are included. The bending sti!ness of the plate
is found to vary between two limits; the high-frequency asymptote is determined by the
bending sti!ness of the laminates. The model was later somewhat improved by Dym and
Lang [7]. Boundary conditions are not discussed in references [6, 7].

A more general description of the bending of sandwich beams is given by Nilsson [8]. In
this model, the laminates are again described as thin plates. However, the general wave
equation is used to describe the displacement in the core. The in#uence of boundary
conditions is not discussed. The model is used to predict the sound transmission loss of
sandwich plates. Some boundary conditions and their in#uence on the bending sti!ness of
a structure were later discussed by Sander [9] using the model presented in reference [8].

Guyader and Lesueur [10] investigated the sound transmission through multilayered
orthotropic plates. The description of the displacement of each layer is based on a model
suggested by Sun and Whitney [11]. A certain computational e!ort is required. Renji et al.
derive a simple di!erential equation governing the apparent bending of sandwich panels in
reference [12]. The model includes shear e!ects. Compared to measured results, the shear
e!ects were overestimated. In particular, in the high-frequency region the predicted bending
sti!ness is too low. A modi"ed Mindlin plate theory is suggested by Liew [13]. The
in#uence of some boundary conditions is also discussed in a subsequent paper [14]. Again,
a certain computational e!ort is required. Maheri and Adams [15] used the Timoshenko
beam equations to describe #exural vibrations of sandwich structures. In particular, e!ects
of variations of the shear coe$cient are discussed for obtaining satisfactory results.

Common to many of these references is the fact that the governing di!erential equations
derived are of the fourth order. Due to the frequency dependence of sandwich structures, the
solutions with four unknowns will agree very well for low frequencies. On the other hand, as
frequency increases the calculated result will disagree strongly with measurements.

The main work on sandwich construction relates to conventional foam-core structures
with various facings. Little work has been done on the dynamics of honeycomb panels. In
1997, Saito et al. [16] proposed a method on how to identify the dynamic parameters for
aluminium honeycomb panels using orthotropic Timoshenko beam theory. They used
a second order di!erential equation and determined the dynamic parameters by comparing
their theories with frequency response measurements. Chao and Chern [17] proposed
a three dimensional (3-D) theory for the calculation of the eigenfrequencies of laminated
rectangular plates. The paper also includes a useful reference list, each reference being
classi"ed according to the method used.

Various "nite element methods are often proposed for describing the vibration of
sandwich panels. For example, a "nite element vibration analysis of composite beams based
on Hamilton's principle is presented by Shi and Lam [18]. A standard FEM code is used by
Cummingham et al. [19] to determine the eigenfrequencies of curved sandwich panels. The
agreement between predicted and measured eigenfrequencies is found to be very good. Liew
et al. [20] used a "nite element model for the numerical evaluation of frequency response
functions of honeycomb panels. Structures with and without delamination were considered.
In the study, the honeycomb structure was modelled as a three-layer substructure with the
use of a 3-D solid polyhedron element.
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There are a large number of methods describing the vibration of sandwich panels.
However, the aim of this work is to formulate simple but su$ciently accurate equations
governing the apparent bending of sandwich beams and plates. Boundary conditions
should also be formulated for the calculation of eigenfrequencies and modes of vibration.
The models should allow simple parameter studies for the optimization of the structures
with respect to their acoustic performance. The aim is also to describe a simple
measurement technique for determining some of the material parameters of composite
beams.

2. HONEYCOMB PANELS

A honeycomb panel is a thin lightweight plate with a honeycomb core with hexagonal
cells. Layered laminates are bonded to both sides of the core as shown in Figure 1. Each
component is by itself relatively weak and #exible. When combined into a sandwich panel
the elements form a sti!, strong and lightweight structure. The facings carry the bending
loads and the core carries the shear loads. In general, the honeycomb core is strongly
orthotropic.

The types of core materials in the panels used for the measurements presented here are
Nomex or aluminium. Nomex is an aramid "bre paper dipped in phenolic resin with low
shear modulus and shear strength. A typical thickness of the Nomex honeycomb panels
investigated is 10 mm with the thickness of the laminate being between 0)3}0)7 mm. The
weight per unit area is of the order of 3 kg/m�/unit area. Each laminate consists of 3}5
di!erent layers bonded together to give the best possible strength. The laminates are not
necessarily symmetric and are usually orthotropic. The core acts as a spacer between the
two laminates to give the required bending sti!ness for the entire beam. The bending
sti!ness of the core itself is in general very low.

The cells in the core give an orthotropic structure. The dynamic characteristics should be
expected to vary in all directions. The shape of the honeycomb cells of a typical aluminium
core is generally very irregular which makes it impossible to describe its geometry in
a simple way. Nomex cores have very regular shapes as compared to Al-cores.

The normal de#ection of a honeycomb panel is primarily caused not only by bending but
also by shear and rotation in the core. A honeycomb panel could be compared to
a three-layered panel as seen in Figure 2. The "gure shows (1) the de#ection of a beam due
to pure bending and (2) due to shear in the core.
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Figure 1. Sandwich panel with a honeycomb core.



Figure 2. De#ection caused by bending (a) and shear (b).
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Figure 3. Excitation of a beam and resulting forces and moments. Dimensions and material parameters for
laminates and core are indicated.
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3. FLEXURAL VIBRATION OF SANDWICH BEAMS

The total lateral displacement w of a sandwich beam is a result of the angular
displacement due to bending of the core as de"ned by � and the angular displacement due
to shear in the core � as

�w
�x

"�#�. (1)

The di!erential equations governing w, � and � can be determined using Hamilton's
principle [4], which for a conservative system is formulated as

���(;!¹#A) dxdt"0, (2)

where; is the potential energy per unit length and ¹ the corresponding kinetic energy per
unit length and A the potential energy induced per unit length by external and conservative
forces. The energies ; and ¹ are derived as functions of the displacement of the beam.

In deriving the equations governing the lateral displacement of the structure shown in
Figure 3, symmetry is assumed. The identical laminates have a Young's modulus E

�
,
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bending sti!ness D
�
, density �

�
and thickness h. The e!ective shear sti!ness of the core is G

�
,

its Young's modulus E
�
, its equivalent density �

�
and its thickness H. The parameter G

�
is

for a thick core not necessarily equal to the shear sti!ness G as suggested by Timoshenko
[21]. The core itself is assumed to have a very low sti!ness in the x-direction. In the
y-direction, the core is assumed to be su$ciently sti! to ensure that the laminates move in
phase within the frequency range of interest.

The bending sti!ness per unit width of the beam is

D
�
"E

�
H�/12#E

�
(H�h/2#Hh�#2h�/3). (3)

In general, E
�
�E

�
. The bending sti!ness of one laminate is

D
�
"E

�
h�/12. (4)

The mass moment of inertia per unit width is de"ned as

I�"�
�
H�/12#�

�
(H�h/2#Hh�#2h�/3) (5)

while the mass per unit area is

�"2h�
�
#H�

�
. (6)

According to Hamilton's principle, equation (2), the kinetic and potential energies of the
structure must be de"ned as functions of the displacement of the beam de"ned by w, � and
� as in equation (1). The total potential energy of a honeycomb beam is due to pure bending
of the entire beam, bending of both laminates and shear in the core. The total potential
energy of a beam, width b and length ¸, is thus

;"

b

2 �
�

�
�D��

��
�x�

�
#2D

��
��
�x�

�
#G

�
H���dx. (7)

The kinetic energy of the honeycomb panel consists of two parts, the kinetic energy due to
vertical motion of the beam and the kinetic energy due to the rotation of a section of the
beam. This gives the total kinetic energy of the beam as

¹"

b

2�
�

�
���

�w
�t�

�
#I��

��
�t�

�

�dx. (8)

The total potential energy for the conservative external forces according to Figure 3 is

!A"b�
�

�

pwdx#b[F
�
w(¸)!F

�
w(0)!M

�
�(¸)#M

�
�(0)]

"b�
�

�

pwdx#b[Fw!M�]�
�
, (9)

where F is the force per unit width, M the moment per unit width and p the external
pressure on the beam. The moments and forces are de"ned in Figure 3. By using the
de"nition of �, equation (1), and by inserting equations (7)}(9) into the variational
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expression (2) the result is
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2

!��� pwdx dt!�� [Fw!M�]�
�
dt"0. (10)

The integration over time is from t
�
to t

�
and over the length from 0 to ¸. E!ecting the

variation as demonstrated in reference [22], it is found that the displacement w and the
angular displacement � must satisfy the di!erential equations
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On eliminating � the equation governing w is obtained as
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�x��t�
!(D

�
�#2D

�
�#I�G�

H)
��w

�x��t�
#G

�
H�D�

��w
�x�

#�
��w
�t� �

#I��
��w
�t�

"

��p
�x�

(D
�
#2D

�
)!G

�
Hp!I�

��p
�t�

. (13)

Elimination of w instead gives the corresponding equation for � as
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The shear angle � can be shown to satisfy the same di!erential equation as �, equation
(14). The boundary conditions to be satis"ed are also obtained from the variational
expression (10) as

F"G
�
H�

�w
�x

!��!2D
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��w
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!

���
�x�� or w"0, (15)
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!

��
�x� or �"0, (16)

0"�
��w
�x�

!

��
�x� or

�w
�x

"0. (17)

These equations provide the boundary conditions for a beam. Using the wave equations
(13) and (14) together with the six boundary conditions, three at each end, the displacements
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w and � can be determined. For free vibrations, the external pressure p is equal to zero
allowing w and � to satisfy the same di!erential equation.

4. BOUNDARY CONDITIONS

For a beam with clamped, free or so-called simply supported edges, the boundary
conditions can be formulated based on results (15)}(17). For a clamped beam, the
displacement as well as the angular displacement must equal zero at the boundary. From
this it follows that w"�w/�x"0 at the edge to satisfy equations (15) and (17). In addition,
MO0. Thus to satisfy equation (16) � must equal zero.

At a free edge Fand M, given in equations (15) and (16), are zero. The rotation �w/�x is
di!erent from zero. Consequently, the requirement de"ned in equation (17) is only satis"ed
if ��w/�x�"��/�x. This condition in combination with the requirementM"0 de"nes the
boundary condition for a clamped edge as ��/�x"0 and ��w/�x�"0. However the
requirement F"0, where F is de"ned in equation (15), gives when inserted into equation
(12) the "nal condition relating to a free edge as D

�
���/�x�"I����/�t�.

For simply supported boundary conditions, it is assumed that the beam is hinged at the
centre line or rather the neutral axis of the beam. The displacement and the bending
moment at this point are equal to zero. For �O0 and �w/�xO0, equations (16) and (17)
give ��/�x"0 and ��w/�x�"0 at a simply supported edge. In summary, the boundary
conditions are listed in Table 1.

5. WAVENUMBERS

By assuming a solution w"exp[i(�t!k
�
x)] to the wave equation (13) and allowing the

external pressure p to equal zero, the wavenumber k
�
must satisfy the expression
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(18)

The six solutions to this equation are written as k
�
"$�

�
, $i�

�
and $i�

�
where

�
�

and �
�

are real whereas �
�

can shift from being real to imaginary for increasing
frequencies. By de"ning the sti!nesses as D

�
"D

��
(1#i	

�
) and G

�
"G

��
(1#i	

�
) losses are

included. The absolute values of the wavenumbers are shown in Figure 4. The material and
geometrical parameters describing the beam, denoted as A

�
, are given in Table 2. The lower

of the two parallel lines in Figure 4 represents the wavenumber corresponding to pure
TABLE 1

Boundary conditions

Clamped end w"0, �"0, �w
�x

"0

Simply supported end w"0, ��
�x

"0,
��w

�x�
"0

Free end ��w

�x�
"0,

��
�x

"0, D
�

���
�x�

"I�
���
�t�



TABLE 2

Geometrical and material parameters for beams. ¸"1)2 m for all beams

Material A
�

A
�

C
�

C
�

C
	

D E
Nomex h.c. Nomex h.c. Al h.c. Al h.c. Al h.c. foam core h.c.

b (m) 0)1 0)1 0)1 0)1 0)1 0)1 0)1
h (mm) 0)5 0)5 0)8 0)8 0)8 0)8 0)8
H (mm) 10 10 17)6 17)6 17)6 16)3 17)1
�
��


(kg/m�) 1264 1264 2700 2700 2700 2700 2700
�
����

(kg/m�) 137)6 137)6 106)8 106)8 106)8 103)1 69)0
� (kg/m�) 2)64 2)64 6)2 6)2 6)2 6)0 5)5
G

�
(MPa) 136 80 560 5600 5600 23 287

E
�
(GPa) 32 55 70 70 80 70 70
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Figure 4. Wavenumbers for beam A
�
. **, �

�
; - - - -, �

�
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�
(propagating); ) ) ) ) ) , �

�
. The

parallel lines are asymptotes for the wavenumber.
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bending of the entire beam. The upper line represents the wavenumber for pure bending of
one of the identical laminates. The parallel lines de"ne the low- and high-frequency limits
for the wavenumber �

�
for the "rst propagating mode. In the mid-frequency region shear

and rotation become important. As these e!ects increase, the wavenumber deviates from the
lower asymptote and shifts towards the upper one.

The dotted and the dashed lines in Figure 4 represents the purely imaginary roots given
by �

�
and �

�
and correspond to the near"eld solutions or the evanescent waves for the

in-phase motion of the laminates. The constant value for low frequencies, the dotted line, is
determined by the thickness of the core. For increasing frequencies, this curve approaches
the limit determined by the wavenumber for evanescent waves in one of the identical
laminates. Decreasing the thickness of the core will increase the constant value in the lowest
frequency range. The other near"eld solution closely follows the asymptote for the bending
of the entire beam for low frequencies. As the frequency increases, �

�
approaches zero for
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f"f

where

f

"

1

2
�
G

�
H

I�
. (19)

For frequencies below f

the wavenumber k

�
"$i�

�
is imaginary, de"ning evanescent

waves. For higher frequencies, k
�
"$i�

�
is real representing a rotating and propagating

wave. The frequency f

is decreased as the moment of inertia is decreased and thus when the

thicknessH is increased. For beams with thick foam cores, the frequency f

tends to be fairly

low.
In summary, the limiting values for the wavenumbers are
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���
. (20)

6. DISPLACEMENT

For a honeycomb beam oriented along the x-axis, the displacement w and the angular
displacement � must satisfy the di!erential equations (13) and (14). The displacement
w must be de"ned as a function of the wavenumbers �

�
, �

�
and �

�
. Consequently,

w"(A
�
sin�

�
x#A

�
cos �

�
x#A

�
e	���#A

�
e��
�	��#A

�
e	���#A

�
e��
�	��)e���, (21)

where the amplitudes A
�
}A

�
are determined by the boundary conditions and the external

forces. The angular displacement � due to pure bending of the beam satis"es for p"0 the
same di!erential equation as w as given by equations (13) and (14). The angular
displacement can therefore be expressed in a similar way as w. Thus,

�"(B
�
sin�

�
x#B

�
cos�

�
x#B

�
e	���#B

�
e��
�	��#B

�
e	���#B

�
e��
�	��)e���, (22)

where �
�
, �

�
and �

�
are solutions to equation (18). In order to completely describe the

displacementw and � for a beam, the parametersA
�
and B

�
need to be determined. However,

the parametersA
�
and B

�
are not independent of each other. By inserting de"nitions (21) and

(22) into equation (12), the result is found to be a function of sin�
�
x, cos �

�
x etc. The total

expression should be valid for any x. Thus it follows that the amplitudes of the functions
sin�

�
x, cos�

�
x, etc. must equal zero. Consequently, the amplitudes B

�
can be determined as

functions of the amplitudes A
�
. The result, using the abbreviations D

�
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�
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�
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�"G
�
H!��I�, is
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From these results, it follows thatX
�
"!X

�
,X

�
"!X

�
andX

�
"!X

�
. For a "nite

beam there are three boundary conditions at each end to be satis"ed. These boundary
conditions are su$cient for determining the relative amplitudes A

�
/A

�
, etc. as well as the

eigenfrequencies for the beam.
The procedure for de"ning the eigenfrequencies and their corresponding modes of

vibrations for a "nite beam is demonstrated by considering a simply supported beam. The
boundary conditions for a simply supported beam are according to Table 1 given as w"0,
��/�x"0 and ��w/�x�"0 for x"0 and ¸. The displacement w is given in equation (21)
and the angular displacement � in equation (22). The six boundary conditions in
combination with equation (23) give a system of equations, which can be written in matrix
form as
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A
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(24)

The "rst line is obtained for w"0 at x"0 and the second at x"¸. The third and fourth
are for ��/�x"0 "rst at x"0 and then at x"¸. The last two lines are obtained when
��w/�x�"0 for x"0 and ¸ respectively. The eigenfrequencies are obtained as solutions to
the determinant of the matrix being zero. For each solution or eigenfrequency, the relative
ratio of the amplitudes are obtained from equation (24) by setting A

�
"1. The amplitudes

B
�
are thereafter obtained from equation (23).
By using the method outlined above the "rst eight eigenfrequencies for beam A

�
,

described in Table 2, are predicted for the boundary conditions of the beam being free,
clamped and simply supported. The resulting eigenfrequencies are listed in Table 3. For
comparison, the corresponding eigenfrequencies using the Euler beam theory are also given
in Table 3. For the Euler beam the bending sti!ness is set to equalD

�
de"ned in equation (3).

The eigenfrequencies predicted from the Euler beam theory are always higher than the
corresponding eigenfrequencies derived as described above; the reason being that shear and
TABLE 3

Predicted eigenfrequencies for beam A
�
in vacuum; ¸"1)2 m

Eigenfrequency (Hz) Free ends Clamped ends Simply supported ends

Euler Sandw. Euler Sandw. Euler Sandw.

f
�

38 37 38 37 17 17
f
�

106 103 106 101 68 66
f
�

207 199 207 196 152 147
f
�

342 326 342 320 271 258
f
�

511 479 511 470 423 397
f
�

714 658 714 644 609 562
f


952 859 952 839 829 750
f
�

1222 1080 1222 1054 1083 960
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rotation are not included in the Euler beam model. The deviations between the results
derived from the two models tend to increase for increasing frequencies. For the Euler
beam, the eigenfrequencies for clamped and free boundaries are the same. This is not the
case using the model presented in section 3. For a clamped beam, shear is induced at the
boundaries thus rendering the beam more #exible as compared to a beam with free edges.
The eigenfrequencies for a clamped beam are consequently lower than the corresponding
eigenfrequencies for the same beam with free edges.

Plot of the displacement of the honeycomb beam at any of the eigenfrequencies shows the
in#uence of shear and bending. The displacement w and the angular displacement � and
� are shown in Figure 5 for a clamped beam at the eigenfrequency f

�
. The angular

displacement � caused by shear is negligible for the "rst mode. For mode 8 the in#uence of
shear is substantial as seen in Figure 6.

For a beam with clamped boundaries, the e!ect of shear is very pronounced close to the
edges. The angular displacement � due to shear is zero at an edge and changes considerably
over a very short distance close to the edge. This step-like behaviour is due to terms like
A

�
e	��� where �

�
�1 in equation (21) de"ning the displacement.

The displacement w and angular displacements � and � for mode 4, corresponding to
324 Hz for beam A

�
with free edges, are shown in Figure 7.

The eigenfrequencies for a clamped and a free beam are according to the Euler theory
identical. However, when shear is considered as in Table 3, there is a di!erence between the
eigenfrequencies for the two conditions; the eigenfrequencies for the clamped boundaries
being lower. This is due to the fact that shear in the beam is induced by the clamped
boundaries. This is not the case for a beam with free edges as demonstrated in Figure 7. The
apparent bending sti!ness for the clamped beam is, therefore, somewhat lower than the
corresponding bending sti!ness for the same beam with free ends.

7. DYNAMIC PROPERTIES OF BEAM

In the previous section, the wave equation governing the displacement of a honeycomb
beam was derived. Based on this di!erential equation wavenumbers, eigenfrequencies and
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modes of vibration can be determined for di!erent boundary conditions. For the response
of a beam to be calculated, all the material parameters of the beam must be known. The
dynamic properties of a composite beam are not always well de"ned. This is due to the fact
that the elements of the assembled structure perform di!erently when bonded together as
compared to when vibrating separately. However, the main dynamic properties of
a composite beam can be determined from measurements of the "rst few eigenfrequencies
when the structure is freely suspended.

Returning to equation (18), the wavenumber k
�
"�

�
for the "rst propagating wave can

be written as k�
�
"���/D

�
where D

�
is the apparent bending sti!ness of the structure.

Consequently D
�
can, as a "rst approximation, be de"ned as the bending sti!ness of
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a simple homogeneous beam which at a certain frequency has the same dynamic properties
as the honeycomb structure. By inserting the de"nition of k

�
in the wave equation (18), an

equation in D
�
is obtained. The resulting expression can generally be simpli"ed whenever

D
�
�D

�
and ��I�(G

�
H. For the structures discussed here, these assumptions hold for

frequencies below 4 kHz as shown in reference [22]. The apparent bending sti!ness D
�
is,

considering these approximations obtained as the solution to equation

�
G

�
H

�������
D���

�
D

�

!D���
� �#D

�
!2D

�
"0. (25)

In the low-frequency range, or as �P0, the "rst part of the equation dominates and so
D

�
PD

�
. The bending sti!ness is consequently determined by pure bending of the beam. In

the high-frequency range, when �PR, D
�
P2D

�
. For high frequencies, the laminates are

assumed to move in phase. In this frequency range, the bending sti!ness for the entire beam
is equal to the sum of the bending sti!ness of the laminates. This agrees with the results
discussed in the previous sections. For a beam with boundary conditions well de"ned, the
bending sti!ness can be determined by means of simple measurements. The apparent
bending sti!ness D

��
for mode n having the eigenfrequency f

�
is for a beam, length ¸ and

mass per unit area �, given by

D
��

"4
�f �
�
�¸�/��

�
for n"1, 2, 32, (26)

where �
�
is given in Table 4 for three boundary conditions.

For a simply supported beam �
�
"n
, measurements reveal the "rst few eigenfrequencies

of the beam. The bending sti!ness of a composite panel is strongly frequency dependent as
given by equation (25). Equation (25) is written in a more general way as

A

f
D���

�
!

B

f
D���

�
#D

�
!C"0, (27)

where

A"

G
�
H

����2
D
�

, B"

G
�
H

����2

, C"2D

�
. (28)

For non-metallic materials, Young's modulus could exhibit slight frequency dependency
as discussed in, for example, reference [4] and demonstrated in references [23, 24]. However
within the frequency range of interest, here up to 4 kHz, the parameters D

�
, D

�
and G

�
in

equation (28) are assumed to be constant for the structures investigated. Using the
measured data, the parameters A, B and C can be determined by means of the least-square
method. The quantity Q

�
is de"ned by

Q
�
"�

�
�
A

f
�

D���
��

!

B

f
�

D���
��

#D
��

!C�
�

(29)
TABLE 4

n 1 2 3 4 5 n'5

Free}free and �
�

4)73 7)85 11)00 14)14 17)28 n
#
/2
clamped}clamped
Free-clamped �

�
1)88 4)69 7)85 11)0 14)14 n
!
/2
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whereD
��
is the measured bending sti!ness at the frequency f

�
for mode i. The parametersA,

B and C are chosen to give the minimum of Q
�
. The shear modulus G

�
and the bending

sti!nesses D
�
and D

�
can be determined, once the parameters A, B and C are calculated

from equation (27).
Even if the inequalities D

�
�D

�
and ��I�(G

�
H are not satis"ed the equivalent bending

sti!ness can still be determined. The eigenfrequencies for the beam are "rst calculated as
described in section 6. Thereafter, the equivalent bending sti!ness is derived from
equation (26) using the appropriate boundary condition.

The mass per unit area of a typical honeycomb panel used in an aircraft is often
(3 kg/m�. Therefore, it is reasonable to consider the surrounding air to have an e!ect on
the vibrations of such a panel. Theoretically, the apparent mass of an in"nite panel when
loaded by the surrounding air can be expressed as

�
�
"�#Re�

2�
�

���

!k��, (30)

which gives �
�
"� for �


(k. Here �

�
is the density of the surrounding #uid, �


is the

wavenumber for propagating waves for the #uid-loaded panel, and is the solution to

�

"�

��1#

2�
�

����

!k��

���
, (31)

where �
�
is the corresponding in vacuo wavenumber and k is the wavenumber in the #uid.

Here the #uid is air and k"2
f/c with c"340 m/s.
Results (30) and (31) give the mass load on an in"nite plate.

8. MEASUREMENTS ON BEAMS

Measurements were performed on beams with di!erent boundary conditions to verify the
theories outlined in sections 3}7. The survey included beams with honeycomb as well as
foam cores. The beams investigated also have di!erent types of laminates. The material data
for the tested structures are presented in Table 2.

The apparent bending sti!ness was if possible determined for laminates, cores and the
assembled structure. For certain types of lightweight honeycomb panels, the laminates are
so thin as to make them almost completely limp with a tendency to curl up when not
bonded to a core. For the types of laminates, the apparent bending sti!ness is not readily
de"ned. In order to determine the apparent bending sti!ness of a beam, the beam was
suspended by strings to simulate free}free boundary conditions. When suspended, the
beams were excited with an impact hammer. The beam was excited perpendicular to the
laminates and along the centreline of the beam to avoid twisting of the beam. The details are
given in reference [22]. Due to the low mass of the material &3 kg/m�, the vibration
measurements were made with a laser vibrometer to achieve non-contact measurements.
The frequency response function was determined to give the eigenfrequencies for the beam.
Based on the frequency response function the loss factor was also determined. The e!ect of
the boundary conditions on the apparent bending sti!ness were also investigated.
Measurements were made on a beam with both ends free and with one end free and the
other "rmly mounted to simulate a clamped boundary.

For the sandwich beams tested, at least the "rst 10 modes and eigenfrequencies could
be identi"ed. In every case the length of each beam was approximately 1)2 m. The
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measurement technique was tested on a beam with well-de"ned bending sti!ness. The
repeatability of the measurements was found satisfactory. The relative error when
determining the apparent bending sti!ness according to equation (29) is largest in the
low-frequency range. For example, one set of four measurements of the third eigenfrequency
f
�

of the lateral vibration of a beam gave the results 182)3, 184)3, 184)0 and 183)6 Hz.
Measurements of the velocity on both laminates were recorded to verify that the laminates
were moving in phase in the frequency range of interest. The details are discussed in
reference [22].

Since honeycomb plates are predominantly anisotropic, measurements are performed on
beams representing the two main inplane directions of the plate. For materials tested in two
directions of the structure, the results are assigned a subscript x or y to indicate the
orientations of the beam.

The dynamic performance of a beam is determined by expression (25) or from equation
(27). The parameters A, B and C in equation (27) are functions of the shear modulus G

�
and

the bending sti!nesses D
�
and D

�
. For each eigenfrequency f

�
, the corresponding apparent

bending sti!ness D
��

is determined from equation (26). At least three sets of data, f
�
and D

��
,

determine the parameters A, B and C and thereby G
�
, D

�
and D

�
as discussed in section 7.

The apparent frequency-dependent bending sti!nessD
�
for one type of honeycomb beam

is shown in Figure 8. The predicted bending sti!ness or rather the value D
�
providing the

best "t to the measured results as obtained from equation (29), the solid line, is determined
from the "rst 12 eigenfrequencies of the freely suspended beam. For comparison, the e!ect
of increased shear modulus, by a factor 10, is also indicated in the "gure. In addition, the
"gure shows the e!ect of increasing the E-modulus of the laminates from 70 to 80 GPa.

Themethod to determine the dynamic parameters of a beam presented in section 7 can be
somewhat improved. If equation (27) is used to determine the parameters A, B and C, the
low-frequency measurements will dominate. The parameter A which depends on the static
bending sti!nessD

�
is therefore determined from equation (27). If instead the quantity to be

minimized is de"ned as

Q
�
"� (AD���

��
!BD���

��
#f

�
D

��
!f

�
C)� (32)
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the high-frequency response of the beam will dominate. When using A derived from
equation (27), the parameter C is determined from equation (32) by setting �Q

�
/�B"0 and

�Q
�
/�C"0. In the mid-frequency region, Q is written as

Q
�
"�

�
�
A

�f
�

D���
��

!

B

�f
�

D���
��

#�f
�
D

��
!�f

�
C�

�
, (33)

where A and C are now known parameters. The parameter B is then determined by setting
�Q

�
/�B"0.

In section 6, the "rst few eigenfrequencies are predicted for beams with di!erent boundary
conditions. In Table 5 some of these predictions are compared with measured results. The
measurements were made on beam A

�
when freely suspended. In addition, measurements

are also made in such a way as to simulate a clamped boundary condition at one end of the
beam with the other end free.

The corresponding bending sti!ness is obtained from equation (26). The measured
bending sti!ness for the free}clamped beam is slightly lower than that for the free}free
beam. This con"rms the conclusion in section 6.

Figure 9 shows measured bending sti!nesses for two beams A
�
and A

�
, from the same

panel with a Nomex core. Again, the beams represent two perpendicular directions. Not
only the core, but also the laminates are orthotropic. The measured bending sti!nesses are
di!erent even in the high-frequency region, the reason being that the laminates are
orthotropic.

The models derived are also tested on sandwich beams with foam cores. Two beams
having the same laminates and the same core thickness were manufactured. In one case the
core consisted of an aluminium honeycomb structure. For the other beam, the core material
is foam with isotropic properties. In both cases the core thickness is 10 mm. The laminates
are made of a 0.8 mm thick aluminium plate. The measured and predicted results are
presented in Figure 10.

As seen from the "gure, the di!erences in core shear give big di!erences in bending
sti!ness. For low and high frequencies, the values are the same for the two specimens due to
the laminates being the same for both beams. It is interesting to note that the two di!erent
cores give the same sti!ness, which means that the core material itself is of minor
TABLE 5

Eigenfrequencies, beam A
�

Measured Calculated

Free}free Free}clamped Free}free Free}clamped
¸"1)2 m ¸"0)963 m ¸"1)2 m ¸"0)963 m

f
�
(Hz) D (Nm) f

�
(Hz) D (Nm) f

�
(Hz) D (Nm) f

�
(Hz) D (Nm)

46 937 11 942 46 943 11 887
127 914 70 896 126 907 68 846
243 869 191 856 243 873 187 822
393 831 362 804 391 829 355 772
568 782 576 745 567 779 564 715
764 725 821 678 764 726 807 655
983 678 1093 616 979 673 1076 597

1210 622 1389 561 1208 620 1364 541
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importance in the low-frequency region. In the mid-frequency region the bending sti!ness
for the beamwith the honeycomb core is signi"cantly higher than that for the beamwith the
foam core. This is due to the di!erence in shear sti!ness between the cores.

In all the cases discussed, the apparent bending sti!ness D
�
approaches the bending

sti!ness 2D
�

for increasing frequencies in accordance with result (25). If instead, the
Timoshenko approximation is used for the entire beam, the measured data should
according to reference [22] be "tted to a function of the form

D
��

#<f
�
�D

��
!="0, (34)
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where < and = are functions of the dynamic properties of the beam. Based on this
expression, the parameters D

�
, D

�
and G

�
cannot be determined from simple beam

measurements. Further, the apparent bending sti!ness D
�
would according to equation (34)

decay as 1/f � in the high-frequency range instead of approaching the limit 2D
�
.

9. FLUID LOADING

For lightweight structures, the surrounding air can be assumed to have an e!ect on the
vibrations of the material for low frequencies.

The #uid loading on a panel is equivalent to an added mass to the structure in the
low-frequency region. The added mass due to the #uid tends to decrease the eigenfrequencies
of the panel as compared to the in vacuo situation. In order to verify this, the "rst few
eigenfrequencies of a beam were measured inside a vacuum chamber. Two measurement
series were made; the "rst in vacuo and the second under normal pressure with the chamber
open or rather with the end section removed. In both cases, the beam was suspended by
strings inside the chamber to simulate free}free boundary conditions. The beam was excited
by an electro-dynamic shaker. The response of the beam was measured by means of a laser
vibrometer using a window in the vacuum chamber as shown in Figure 11. The added mass
e!ect can be calculated from equation (30), the bending sti!ness of the beam being the same
in both the cases. The total mass per unit area of the beam is shown in Figure 12. This total
mass is the sum of the actual mass of the beam and the added mass due to the #uid loading.
The actual mass per unit area is 2)64 kg/m�. The dashed line in the "gure represents the
predicted total mass per unit area as given by equation (30).

The agreement between the predicted and measured results is satisfactory despite the fact
that the predicted result is based on a model valid only for in"nite plates whereas the
measurements were made on "nite beams. It can be concluded from Figure 12 that the
added mass e!ect is of the order 30% of the actual mass of the beam in the low-frequency
region. The maximum just above 1 kHz is due to the coincidence e!ect. This maximum
would be smoothed to give better agreement with measurement at around coincidence if
losses were included.
Shaker

Vacuum

Pump
Vacuum chamber

Test beam Laser vibrometer

Figure 11. Measurements in vacuum chamber.
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10. BENDING OF HONEYCOMB PLATES

An expression de"ning pure bending of an orthotropic plate is as discussed in references
[2, 3] given by

D
��

��w

�x�
#2(D

��
#2D

��
)

��w
�x��y�

#D
��

��w
�y�

#�
��w
�t�

"0. (35)

The bending sti!nesses D
��
are de"ned as

D
��

"

D
�

1!v
��
v
��

, D
��

"

D
�

1!v
��
v
��

, D
��

"

v
��
D

�
1!v

��
v
��

"

v
��
D

�
1!v

��
v
��

, 2D
��

"D
��
. (36)

In certain cases, as discussed in reference [25], the torsional rigidity (D
��

#2D
��
) can be

replaced by �D
�
D

�
. This substitution can be made whenever the shear modulus G

��
is

approximated by �E
�
E

�
/[2(1#�v

��
v
��
)]. In reference [12], the ratio �"(D

��
#

2D
��
)/�D

�
D

�
is discussed for some typical honeycomb structures. It is demonstrated that

the parameter � can be as low as 0)06. The bending of such a plate is consequently
dominated by the bending sti!ness in the x and y directions. It is therefore reasonable to
assume that the bending of honeycomb plates can be approximated by the expression

�
1

1!v
��
v
��
��D�

��w
�x�

#2��D
�
D

�

��w

�x��y�
#D

�

��w

�y��#�
��w
�t�

"0, (37)

where the parameters D
�
and D

�
represent the apparent bending sti!ness of beam elements

in the x and y directions of the plate. In general (1!v
��
v
��
) can, as a "rst approximation, be

set to equal unity. This is equivalent to saying that the test beams used are modelled as
narrow plates. The eigenfrequencies f


�
for a simply supported and rectangular plate

satisfying equations (37) are given by

f

�

"
�[D
�
(m/¸

�
)�#2��D

�
D

�
(m/¸

�
)�(n/¸

�
)�#D

�
(n/¸

�
)�]���/�4�, (38)
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where m and n are integers and ¸
�
and ¸

�
are the dimensions of the rectangular plate along

the x- and y- axis. The parameters D
�
, D

�
and � are frequency dependent. Equation (38) is

solved by iteration.
For a plate with free or clamped edges and satisfying equation (35), the eigenfrequencies

can be estimated by means of the Rayleigh}Ritz method [4]. By using simple beam
functions satisfying the proper boundary conditions, the eigenfrequencies f


�
for

a rectangular plate with free edges are according to Blevins [26] given by

f

�

"
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where

G


"0, H
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"0 for m"0,
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� for m'2. (40)

As before D
�
, D

�
and � are frequency dependent and should be evaluated at f"f


�
.

The "rst few eigenfrequencies for a plate were measured in the same way as for the beams,
described in section 8. The plate was suspended by strings to simulate free boundary
conditions. The plate was hanging vertically. The measurements were repeated with the
plate resting on a soft and resilient layer, to ensure that the recorded eigenfrequencies were
not in#uenced by the mounting. The dimensions of the plate were ¸

�
"1)2167 m and

¸
�
"0)429 m. The material and geometrical parameters for the plate or structure A or

rather A
�
and A

�
are given in Table 2. The bending sti!nesses D

�
and D

�
are shown in

Figure 9.
The eigenfrequencies for the plateA with free edges can now be obtained from expression

(39). The parameters D
�
, D

�
and � are all frequency dependent. The parameter � is adjusted

to give a good agreement between the predicted and measured eigenfrequency for mode
(1,1). The parameter � is set to equal 0)3. If all the material and geometrical parameters are
well de"ned, the quantities D

�
, D

�
and � can be calculated as functions of frequency. The

"rst few measured and predicted eigenfrequencies for plate A are compared in Figure 13.

11. CONCLUSION

Some of the dynamic properties of symmetric sandwich beams with honeycomb cores can
be derived using Hamilton's principle. The results could be extended to also include
asymmetric structures. The laminates can be considered as being thin plates. Shear e!ects in
the core as well as rotation are included. However, for most types of lightweight structures
the shear rather than the rotational e!ects tend to dominate.

Based on Hamilton's principle, a sixth order di!erential equation governing the
displacement of the beam is derived. For free vibrations of the beam, the shear angle is
found to satisfy the same di!erential equation as the displacement. In the very low
frequency range, the lateral motion of a sandwich beam is determined by pure bending of



0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Predicted  fmn (Hz)

M
ea

su
re

d 
 f m

n 
(H

z)

Figure 13. Measured and predicted eigenfrequencies for plate A, 1)22�0)43 m�.
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the entire construction. The corresponding limit in the high-frequency range is given by the
#exural motion of the seemingly uncoupled laminates. Consequently the apparent bending
sti!ness of the beam is strongly dependent on frequency and is to a certain extent,
determined by the properties of the laminates, decreasing with increasing frequencies. If,
however, the bending of a sandwich beam is described by means of the Timoshenko model
the apparent bending sti!ness is found to decrease monotonously.

The boundary conditions for free, clamped and simply supported beams are also
obtained using Hamilton's principle. At each edge three boundary conditions must be
satis"ed. The apparent bending sti!ness of a sandwich beam is found to decrease as the
boundary conditions are constrained. This is due to shear e!ects being induced. This e!ect
is enhanced by increasing the thickness of the core.

The e!ective shear sti!ness of the core, the bending sti!ness of laminates as well as the
bending sti!ness of the entire beam can be determined based on simple measurements on
the assembled beam. The models developed can also be used to describe some of the
dynamic properties of sandwich beams with foam cores. The addedmass e!ect due to a #uid
loading on a lightweight structure can in the low-frequency region be su$ciently well
described by means of a model derived for in"nite structures. The #uid loading can be
considerable or of the order 30% of the weight of lightweight panels in the low-frequency
range.

The eigenfrequencies of orthotropic plates can be estimated fairly accurately based on
measurements on beams representing the two main axes of the plate.
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